
MVT, Optimization, L’Hopital’s rule and Integrals

November 11, 2016

Problems

Problem 1. Suppose 0 < f ′(x) < 1
2 for all x-values. Show that f(−1) < f(1) < 1 + f(−1).

Solution: By Mean Value Theorem, f(1)−f(−1)1−(−1) = f ′(c) for some c ∈ (−1, 1). Since f ′(c) > 0, we get
f(1)−f(−1)

2 > 0, i.e. f(1) > f(−1). Since f ′(c) < 1
2 , we get f(1)−f(−1)

2 < 1
2 , i.e. f(1) < 1 + f(−1).

Problem 2. Sketch the graph of xe1/x.

Solution: The domain is the set {x ∈ R | x 6= 0} of all non-zero real numbers.
To find the critical points, we set f ′(x) = e1/x − 1

xe
1/x = 1

xe
1/x(x− 1) = 0, which has only one solution

x = 1. Since at x = 1 the function f ′(x) changes sign from − to +, the point x = 1 is a local minimum.
To find inflection points, we find f ′′(x) = 1

x3 e
1/x which is never zero. At x = 0 the derivative doesn’t exist

(even the function is not defined), but f ′′(x) changes sign from − to + at this point, and so x = 0 is an
inflection point. The function is concave down when x < 0 and concave up when x > 0.
Now, we need to analyze the only point of discontinuity: the point x = 0. We find lim

x→0+
xe1/x = +∞ and

lim
x→0−

xe1/x = 0.

Finally, we need to understand the behavior of xe1/x when x→ +∞ and when x→ −∞. We see
lim

x→+∞
xe1/x = +∞ and lim

x→−∞
xe1/x = −∞.

Combining it all together, we get the following graph:

1



Problem 3. An open-topped cylindrical pot is to have volume 250 cm3.The material for the bottom of the
pot costs 4 cents per cm2; that for its curved side costs 2 cents per cm2. What dimensions will minimize
the total cost of this pot?

Solution: Let r be the radius of the pot, and h be its height. Then the volume is given by V = πr2h, and
so we are given that πr2h = 250. From this condition we can find that h = 250

πr2 .
The area of the bottom of the pot is πr2 and so it will cost 4πr2 to make it. The area of the side of the pot
is 2πrh = 500

r and so it will cost 1000
r to make it. The total cost is C(r) = 4πr2 + 1000

r . We want to
minimize this cost.
The derivative C ′(r) = 8πr − 1000

r2 , and so the critical points are found by equation 8πr − 1000
r2 = 0, which

has only one solution r = 5
3
√
π

. Since the derivative changes sign at r = 5
3
√
π

from − to +, this is a point of

local minimum. Since lim
r→0+

C(r) =∞ and lim
r→+∞

C(r) =∞, the point r = 5
3
√
π

is also a point of global

minimum, and so the optimal radius should be r = 5
3
√
π

. The corresponding height is

h = 250
πr2 = whatever it is .

Problem 4. Compute lim
x→0

(
1

sin2(x)
− 1

x2

)
.

Solution: We get

lim
x→0

(
1

sin2(x)
− 1

x2

)
= lim
x→0

x2 − sin2(x)

x2 sin2(x)

= lim
x→0

x2 − sin2(x)

x2 sin2(x)
· lim
x→0

sin2(x)

x2

= lim
x→0

x2 − sin2(x)

x4

= lim
x→0

2x− 2 sin(x) cos(x)

4x3

= lim
x→0

2x− sin(2x)

4x3

= lim
x→0

2− 2 cos(2x)

12x2

= lim
x→0

4 sin(2x)

12 · 2x

=
1

3
lim
x→0

sin(2x)

2x

=
1

3
.

Problem 5. Compute the following integrals:

1.
∫
xex

2

dx

2.
∫

x+1
2x−3dx

3.
∫

1
x2+4dx

Solution:

1. 1
2e
x2

+ C.

2. since x+1
2x−3 = 1

2 + 5
4x−6 , we can guess the integral to be 1

2x+ 5
4 ln |4x− 6|+ C.

3. we know the derivative of arctan(x) is 1
x2+1 , so if we take arctan(x/2), its derivative will be

1
2 ·

1
(x/2)2+1 which is almost what we want, except we need to multiply it by 1

2 . Thus, the answer is
1
2 arctan x

2 + C.
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Problem 6. At time t = 0 a car is moving at 6 m/s and driver smoothly accelerates so that the
acceleration after t seconds is a(t) = 3t m/s2.

1. Write a formula for the speed v(t) of the car after t seconds.

2. How far did the car travel between during the time it took to accelerate from 6 m/s to 30 m/s?

Solution:

1. Since a(t) = dv(t)
dt = 3t, we know v(t) = 3

2 t
2 + C. Since at t = 0 the speed is 6 m/s, C = 6, and so

v(t) = 3
2 t

2 + 6.

2. The velocity was 6 m/s at time t = 0 and it was 30 m/s when 3
2 t

2 + 6 = 30, i.e. t = 4. So, we are

interested in finding s(4)− s(0). Since v(t) = ds(t)
dt , we find s(t) = 1

2 t
3 + 6t+ C, and

s(4)− s(0) = 1
243 + 6 · 4 + C − 1

203 − 6 · 0− C = 56 meters.
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