MVT, Optimization, L'Hopital's rule and Integrals

November 11, 2016

Problems

Problem 1. Suppose $0 < f'(x) < \frac{1}{2}$ for all *x*-values. Show that f(-1) < f(1) < 1 + f(-1).

Solution: By Mean Value Theorem, $\frac{f(1)-f(-1)}{1-(-1)} = f'(c)$ for some $c \in (-1,1)$. Since f'(c) > 0, we get $\frac{f(1)-f(-1)}{2} > 0, \text{ i.e. } f(1) > f(-1). \text{ Since } f'(c) < \frac{1}{2}, \text{ we get } \frac{f(1)-f(-1)}{2} < \frac{1}{2}, \text{ i.e. } f(1) < 1 + f(-1).$

Problem 2. Sketch the graph of $xe^{1/x}$.

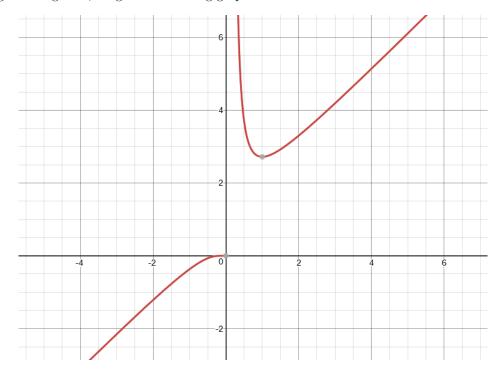
Solution: The domain is the set $\{x \in \mathbb{R} \mid x \neq 0\}$ of all non-zero real numbers.

To find the critical points, we set $f'(x) = e^{1/x} - \frac{1}{x}e^{1/x} = \frac{1}{x}e^{1/x}(x-1) = 0$, which has only one solution x = 1. Since at x = 1 the function f'(x) changes sign from - to +, the point x = 1 is a local minimum. To find inflection points, we find $f''(x) = \frac{1}{x^3}e^{1/x}$ which is never zero. At x = 0 the derivative doesn't exist (even the function is not defined), but f''(x) changes sign from - to + at this point, and so x = 0 is an inflection point. The function is concave down when x < 0 and concave up when x > 0.

Now, we need to analyze the only point of discontinuity: the point x = 0. We find $\lim_{x \to 0^+} xe^{1/x} = +\infty$ and $\lim x e^{1/x} = 0.$

 $x \rightarrow 0^{-}$

Finally, we need to understand the behavior of $xe^{1/x}$ when $x \to +\infty$ and when $x \to -\infty$. We see $\lim_{x \to +\infty} xe^{1/x} = +\infty \text{ and } \lim_{x \to -\infty} xe^{1/x} = -\infty.$ Combining it all together, we get the following graph:



Problem 3. An open-topped cylindrical pot is to have volume 250 cm^3 . The material for the bottom of the pot costs 4 cents per cm²; that for its curved side costs 2 cents per cm². What dimensions will minimize the total cost of this pot?

Solution: Let r be the radius of the pot, and h be its height. Then the volume is given by $V = \pi r^2 h$, and so we are given that $\pi r^2 h = 250$. From this condition we can find that $h = \frac{250}{\pi r^2}$. The area of the bottom of the pot is πr^2 and so it will cost $4\pi r^2$ to make it. The area of the side of the pot is $2\pi rh = \frac{500}{r}$ and so it will cost $\frac{1000}{r}$ to make it. The total cost is $C(r) = 4\pi r^2 + \frac{1000}{r}$. We want to minimize this cost.

The derivative $C'(r) = 8\pi r - \frac{1000}{r^2}$, and so the critical points are found by equation $8\pi r - \frac{1000}{r^2} = 0$, which has only one solution $r = \frac{5}{\sqrt[3]{\pi}}$. Since the derivative changes sign at $r = \frac{5}{\sqrt[3]{\pi}}$ from - to +, this is a point of local minimum. Since $\lim_{r\to 0^+} C(r) = \infty$ and $\lim_{r\to +\infty} C(r) = \infty$, the point $r = \frac{5}{\sqrt[3]{\pi}}$ is also a point of global minimum, and so the optimal radius should be $r = \frac{5}{\sqrt[3]{\pi}}$. The corresponding height is $h = \frac{250}{\pi r^2} =$ whatever it is .

Problem 4. Compute $\lim_{x\to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2}\right)$.

Solution: We get

$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)}$$
$$= \lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)} \cdot \lim_{x \to 0} \frac{\sin^2(x)}{x^2}$$
$$= \lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^4}$$
$$= \lim_{x \to 0} \frac{2x - 2\sin(x)\cos(x)}{4x^3}$$
$$= \lim_{x \to 0} \frac{2x - \sin(2x)}{4x^3}$$
$$= \lim_{x \to 0} \frac{2 - 2\cos(2x)}{12x^2}$$
$$= \lim_{x \to 0} \frac{4\sin(2x)}{12 \cdot 2x}$$
$$= \frac{1}{3} \lim_{x \to 0} \frac{\sin(2x)}{2x}$$
$$= \frac{1}{3}.$$

Problem 5. Compute the following integrals:

- 1. $\int x e^{x^2} dx$
- 2. $\int \frac{x+1}{2x-3} dx$
- 3. $\int \frac{1}{x^2+4} dx$

Solution:

- 1. $\frac{1}{2}e^{x^2} + C$.
- 2. since $\frac{x+1}{2x-3} = \frac{1}{2} + \frac{5}{4x-6}$, we can guess the integral to be $\frac{1}{2}x + \frac{5}{4}\ln|4x-6| + C$.
- 3. we know the derivative of $\arctan(x)$ is $\frac{1}{x^2+1}$, so if we take $\arctan(x/2)$, its derivative will be $\frac{1}{2} \cdot \frac{1}{(x/2)^2+1}$ which is almost what we want, except we need to multiply it by $\frac{1}{2}$. Thus, the answer is $\frac{1}{2} \arctan \frac{x}{2} + C$.

Problem 6. At time t = 0 a car is moving at 6 m/s and driver smoothly accelerates so that the acceleration after t seconds is $a(t) = 3t \text{ m/s}^2$.

- 1. Write a formula for the speed v(t) of the car after t seconds.
- 2. How far did the car travel between during the time it took to accelerate from 6 m/s to 30 m/s?

Solution:

- 1. Since $a(t) = \frac{dv(t)}{dt} = 3t$, we know $v(t) = \frac{3}{2}t^2 + C$. Since at t = 0 the speed is 6 m/s, C = 6, and so $v(t) = \frac{3}{2}t^2 + 6$.
- 2. The velocity was 6 m/s at time t = 0 and it was 30 m/s when $\frac{3}{2}t^2 + 6 = 30$, i.e. t = 4. So, we are interested in finding s(4) s(0). Since $v(t) = \frac{ds(t)}{dt}$, we find $s(t) = \frac{1}{2}t^3 + 6t + C$, and $s(4) s(0) = \frac{1}{2}4^3 + 6 \cdot 4 + C \frac{1}{2}0^3 6 \cdot 0 C = 56$ meters.